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Abstract. We present a high order perturbative computation of the renormalization constants ZV , ZA and
of the ratio ZP /ZS for Wilson fermions. The computational setup is the one provided by the RI’-MOM
scheme. Three- and four-loop expansions are made possible by numerical stochastic perturbation theory.
Results are given for various numbers of flavors and/or (within a finite accuracy) for generic nf up to three
loops. For the case nf = 2 we also present four-loop results. Finite-size effects are well under control, and the
continuum limit is taken by means of hypercubic symmetric Taylor expansions. The main indetermination
comes from truncation errors, which should be assessed in connection with the convergence properties of
the series. The latter is best discussed in the framework of boosted perturbation theory, whose impact we
try to assess carefully. Final results and their uncertainties show that high-loop perturbative computations
of lattice QCD renormalization constants (RCs) are feasible and should not be viewed as a second choice.
As a by-product, we discuss the perturbative expansion for the critical mass, for which results are also for
generic nf up to three loops, while a four-loop result is obtained for nf = 2.

1 Introduction

Lattice perturbation theory (LPT) has for a long time
been the only available tool for the computation of lat-
tice QCD renormalization constants (RCs). By now, non-
perturbative computations are preferred.We should stress,
however, that there is no theoretical obstacle to the per-
turbative computation of either finite or logarithmically
divergent RCs, like, for example, those for quark bilinears
or their ratios. The main difficulties are of a practical na-
ture. The first one is that LPT is technically very hard,
much harder than perturbation theory (PT) on the con-
tinuum; for a beautiful review on LPT, see [1]. Therefore,
computations are often performed only at one loop. This
is a serious limitation, which is made even more severe by
the bad convergence properties of LPT. To take care of
this problem, boosted perturbation theory (BPT) and/or
of tadpole-improved perturbation theory (TIPT) [2] is of-
ten used. There is quite a consensus on the fact that at one
loop the impact of BPT (and/or TIPT) is often important.
On the other hand, there is no clear-cut result on the ac-
tual control on these procedures. One should always keep
in mind that the convergence properties of the series are
the real issue, and assessing them from a one-loop compu-
tation is of course impossible. Other improvement schemes
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have in recent years been proposed, which aim at resum-
ming some leading contributions [3]. A different approach
to the computation of RCs in lattice QCD is a completely
non-perturbative one. In this case, one needs an intermedi-
ate scheme, which is eventually matched to the MS scheme
(the one in which phenomenologists are most interested in)
by a continuum perturbative computation. Popular inter-
mediate schemes are the regularization independent (RI’-
MOM) [4] scheme and the Schrödinger functional (SF) [5]
scheme. A non-perturbative computation eliminates the
truncation errors. On the other hand, one needs to face
all the difficulties inherent in the numerics. Among these
is the high computational effort of unquenched (or par-
tially quenched) lattice QCD simulations. In practice, it is
sometimes extremely hard to get a good signal for realistic
simulation parameters. For this reason LPT is still neces-
sary, either for comparison, or because it is the only feasible
approach.
In recent years, the technique of numerical stochas-

tic perturbation theory (NSPT) has been introduced (for
an extended introduction – which in particular covers the
unquenched version – see [6]). NSPT is a numerical im-
plementation of stochastic PT [7]. It is a numerical tool
that enables one to perform LPT computations with no
reference whatsoever to diagrammatics. By making use of
NSPT we can compute lattice QCD RCs to high orders,
which here means three (or even four) loops. At these
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orders the use of BPT enables one to assess the conver-
gence properties of the series and to gain better control of
the truncation errors. Since we necessarily work on a finite
lattice, finite-volume and scaling violation effects have to
be assessed carefully: this can be done. A careful extrac-
tion of the continuum limit is one of the good points of
the approach: the solution comes from what we call hyper-
cubic symmetric Taylor expansions. Another nice feature
comes from the fact that we can work directly in the mass-
less limit (which is also where RCs are usually defined).
This also eliminates the need of expensive chiral extrapo-
lations. Finally, perturbative computations offer the pos-
sibility of stronger analytical control, knowing the depen-
dence on the coupling and on the number of flavors.
The main message of this paper is that high-loop per-

turbative computations of lattice QCD RCs are feasible
and should not be seen as a second choice. In particular,
having both the perturbative and the non-perturbative de-
terminations of RCs gives a valuable comparison. This is
not at all academic. As a matter of fact, non-perturbative
determinations are based on assumptions that have only
been proved in PT.
This is the first of a couple of papers that deal with

the NSPT perturbative computation of Wilson quark
bilinears. Renormalization conditions are fixed by the
RI’-MOM prescriptions. Here we can make a comparison
with a non-perturbative determination [8].1 In this paper
we will concentrate on the determination of finite RCs:
ZV , ZA and the ratios ZP /ZS and ZV /ZA

2 for (unim-
proved) Wilson fermions. As a by-product, we also obtain
the expansion for the critical mass. Results are given for
various numbers of flavors. At three loops some results are
even given (to a finite accuracy) for generic nf . Instead,
we present fourth loop results for the nf = 2 case only.
A forthcoming paper will deal with the computation of
logarithmically divergent RCs for quark bilinears (in par-
ticular, the RC for the scalar current ZS = Z

−1
m , which is

phenomenologically relevant for the determination of the
quark masses). This deserves some extra caution, since
dealing with anomalous dimensions requires one in par-
ticular to take care of finite-volume effects.
The paper is organized as follows. In Sect. 2 we re-

call the basic definitions of the renormalization scheme to
which we adhere, while in Sect. 3 we discuss some techni-
cal details of our computations. Section 4 introduces the
main tool that is needed to extract the continuum limit
(the already mentioned hypercubic symmetric Taylor ex-
pansions): this is done by discussing the (prototype) com-
putation of the quark propagator. Section 5 contains our
results: first we discuss the finite ratiosZP /ZS andZV /ZA,
for which we can fit three-loop results for generic nf ; then
we move to ZV and ZA (results are given at three loops for
nf = 0 and at four loops for nf = 2); finally, we present a by-
product of our computations, i.e. the critical mass to three
loops (again, actually four in the case nf = 2). In Sect. 6

1 The comparison will be made for given values of the coup-
ling (β = 5.8) and number of flavors (nf = 2).
2 We will explain below why the computations of ZV , ZA and
ZV /ZA are not tautological here.

we discuss the general features of computations dealing
with an anomalous dimension (this sets the stage for what
will be discussed in a following paper [9]). In Sect. 7 we
deal with resummations and convergence properties of our
series, and finally Sect. 8 contains our conclusions and per-
spectives for future applications.

2 The RI’-MOM renormalization scheme

In order to compute the renormalization constants we ad-
here to the RI’-MOM scheme. This is one of the so-called
physical schemes3 (as opposed to the more popular MS
scheme), and it goes back to the MOM scheme of [10].
It became very popular after the introduction of non-
perturbative renormalization in [4]. RI emphasizes the reg-
ulator independent nature of the scheme, which in particu-
lar makes the lattice a viable regulator. The prime denotes
a renormalization condition for the quark field, which is
slightly different from the original one. All the details on
this scheme can be found, for example, in [11]. In the fol-
lowing we only introduce the definitions that are relevant
for our application.
The basic quantities of our computation are the quark

bilinears between external quark states at fixed (off-shell)
momentum p,

∫
dx〈p|ψ(x)Γψ(x)|p〉 =GΓ (pa) . (1)

Here Γ stands for any of the 16 matrices that provide the
standard basis of the Dirac space (Dirac indices will often
be suppressed). We adopt the usual naming convention for
the bilinears: the scalar (S) is defined by Γ = 1, the vec-
tor (V ) by Γ = γµ, the pseudoscalar (P ) by Γ = γ5, the
axial (A) by Γ = γµγ5 and the tensor (T ) by Γ = σµν =
1/2[γµ, γν ]. Above, we made explicit the dependence on the
lattice spacing a, which serves as a regulator. Below we will
use the notation p̂= pa.
These quantities being gauge dependent, a choice for

the gauge condition has to be made. We will focus on com-
putations in the Landau gauge. From a numerical point
of view, this gauge condition is easy to fix on the lattice.
Moreover, one does not need to discuss the gauge param-
eter renormalization. It also gives some extra bonus: the
anomalous dimension for the quark field is zero at one loop.
We can trade the GΓ (pa) for the amputated function

ΓΓ (pa) (S(pa) is the quark propagator)

GΓ (pa)→ ΓΓ (pa) = S
−1(pa)GΓ (pa)S

−1(pa) . (2)

The ΓΓ (pa) are eventually projected on the tree-level

structure by a suitable operator P̂OΓ

OΓ (pa) = Tr
(
P̂OΓ ΓΓ (pa)

)
. (3)

3 One should nevertheless keep in mind that the name physi-
cal is actually misleading in the case of QCD.
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Renormalization conditions are now given in terms of the
OΓ (pa) according to

ZOΓ (µa, g(a))Z
−1
q (µa, g(a))OΓ (pa)

∣∣
p2=µ2

= 1 . (4)

Here the Zs depend on the scale µ via the dimension-
less quantity µa, while the dependence on g(a) will be
expanded in PT. One should keep in mind from the very
beginning that we will eventually be interested in the a→ 0
limit of the Z. The quark field renormalization constant
Zq, which enters the above formula, is defined by

Zq(µa, g(a)) =−i
1

12

Tr(�pS−1(pa))

p2

∣∣∣∣
p2=µ2

. (5)

The original RI scheme (without a prime) would have
a derivative with respect to pµ, instead.
In order to get a mass independent renormalization

scheme, one imposes renormalization conditions on the
massless quarks. In perturbation theory this implies know-
ledge of the relevant counterterms, i.e. the values of the
various orders of theWilson fermions’ critical masses. One-
and two-loop results are known from the literature [12, 13].
The third (and fourth) loop have been computed by us as
a (necessary) by-product of the current computations: the
results are reported in Sect. 5 (the three-loop result in the
nf = 2 case has already been reported in [6]). Notice that
the situation in the non-perturbative framework is more
cumbersome with respect to staying in the massless limit.
The determination of the critical mass is in a sense the pro-
totype non-perturbative computation of an additive renor-
malization constant. As is well known, also this is a matter
of principle: being a power-divergent renormalization, the
critical mass itself cannot be computed in perturbation
theory in the continuum limit. Still, from a numerical point
of view the massless limit is always reached by an extrap-
olation procedure, which is usually a major source of error
in the non-perturbative determination of RCs for lattice
QCD.
A great advantage of working in the RI’-MOM scheme

is that the relevant anomalous dimensions are known to
three loops [11]. One is usually ready to admit that get-
ting the logarithms is the easy part in the computation of
a renormalization constant, while fixing the finite parts is
the hard part of the work. As we will see, the situation
is, to a certain extent, the opposite in the case of NSPT.
We actually take for granted the logarithms (they are fixed
by the choice of the scheme) and mainly concentrate on
the computation of finite parts. As is discussed in Sect. 6,
finite-size effects open anyway the backdoor to corrections
to the logarithmic contributions. Three loops being the
order to which anomalous dimensions are known, this is
also the order at which we can push our computations for
every observable that has a non-vanishing anomalous di-
mension. On the other hand, the finite RCs we will be
concerned with in the present paper are in principle not
constrained by anything but numerical precision, and that
is why we pushed the computation of these quantities to an
even higher order (four loops, at the moment).

3 Some technical details of our computations

The lattice formulation we use in this work is defined by the
plain Wilson action for gauge fields and plain (i.e. unim-
proved) Wilson fermions. As we said, our computational
tool is NSPT [6]. Here we only point out those technical
details that are relevant to the present computation. In
its actual implementation, NSPT shares a few ingredients
that are common to any lattice simulation. The main pecu-
liarity is the representation of the fields as an expansion in
the coupling constant, i.e.

Uµ(x) = 1+
n∑
i=1

β−
i
2U (i)µ (x) . (6)

As is apparent from the formula above, our preferred ex-
pansion parameter is the inverse of the lattice parameter
β = 2NC/g

2
0, NC being the number of colors and g0 = g(a)

the bare lattice coupling; thus β−
1
2 is proportional to g0.

In our case a three-loop computation requires n= 6, while
for four loops (which is at the moment the maximum order
for which we report results in the nf = 2 case) one needs
n = 8. The proliferation of fields results in the request
of a bigger amount of memory than in ordinary (non-
perturbative) lattice QCD simulations. It is of course rel-
evant also in terms of computing power: the algorithm is
dominated by order-by-order multiplications, i.e. the num-
ber of floating-point operations grows as n(n−1)/2. While
this may seem to be a great overhead with respect to ordi-
nary non-perturbative dynamics, this is actually not true.
In particular, in unquenched NSPT (like in any fermionic
simulation) the basic building block is the inverse of the
Dirac matrix, for which the perturbative nature of the
computation results in a closed recursive algorithm, which
is fairly well implemented [6]. Moreover, as we will discuss
later, there is no need to extrapolate to the chiral limit.
As a result, NSPT fermionic computations are actually less
demanding than non-perturbative counterparts.
As in many non-perturbative numerical computations,

it is worth producing fairly decorrelated configurations and
store them for different subsequent measurements. A 324

lattice (both at three and at four loops) fits well on an
APEmille crate. At the same orders, a 164 lattice can be
managed by small PC-clusters or even by a robust (but
nowadays standard) PC. While the first case is treated
by our TAO4 codes, the second case is implemented in
the framework of a by now well-established C++ NSPT
package.
The number of flavors nf enters the computations as

a parameter, i.e. one has to perform different simulations
for different nf . In perturbation theory each order has
a trivial polynomial dependence on nf , so that one can fit
the nf dependence. The case of nf = 0 has by now been
simulated both on 164 and on 324 lattices: results have
been used to assess finite-size effects. The unquenched
cases have been simulated on the bigger (324) lattice: nf =
2 is the case for which we have the largest number of config-
urations, while we also have several tens of configurations

4 TAO is the APE-dedicated programming language.
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for both nf = 3 and nf = 4. As a result, at the moment we
are not going to quote every result for any nf . In particular,
four-loop results are at the moment only given in the case
nf = 2, for a reason that will become clear in a moment.
As already stated, one good feature of NSPT computa-

tions is the fact that one can stay at the chiral limit. As we
have already pointed out, the computation of the Wilson
fermion critical mass was in a sense the prototype compu-
tation of a non-perturbative (additive, in this case) renor-
malization constant. It is also the prototype of a power-
divergent renormalization that cannot be safely computed
in PT in the continuum limit. On the other hand, no nu-
merical simulation can be performed at kcritical (we adhere
to the common non-perturbative notation of quoting the
hopping parameter rather than the mass of the quark): the
chiral limit is always reached by means of a convenient chi-
ral extrapolation.
In perturbation theory one corrects for the additive

quark mass renormalization by order-by-order plugging in
critical mass counterterms. This is exactly what we do in
NSPT. We were ready to start our simulations straight
away at three-loop order, which requires the knowledge
of the critical mass up to two loops, and this is exactly
what can be taken from the literature [12, 13]. Each subse-
quent order asks for an iterative procedure: one computes
the critical mass at the nth order (from nth-order simula-
tions) and then plugs it in the (n+1)th-order simulations.
In particular, for the case nf = 2 our determination of the
three-loop critical mass was good enough to plug it into
four-loop simulations. The statistics we collected for the
other values of nf are at the moment not sufficient to safely
aim at the same accuracy.
The RI’-MOM scheme renormalization has been dis-

cussed in a generic covariant gauge [11]. We have already
stated that our computations were performed in Landau
gauge and stressed what the advantages of a such a choice
are. From the point of view of computer simulations fix-
ing the gauge to Landau in NSPT simply requires the
order-by-order implementation of a well-known (FFT -
accelerated) iterative procedure [6]. It is worth stressing
that in the NSPT framework also a peculiar implementa-
tion of the Faddeev–Popov mechanism is possible (see [14]
for an application): by the same trick as the one that en-
ables us to treat the fermionic determinant we can manage
the Faddeev–Popov determinant, without the inclusion of
ghost fields. Still, we can perform our computations in
any covariant gauge with gauge parameter ξ �= 0, i.e. the
Landau gauge is the only one that is not viable (apart
from an extrapolation procedure). While the generic co-
variant gauge NSPT simulation has (moderate) computa-
tional overhead, Landau gauge fixing has a delicate issue in
the numerical noise, which is introduced by the (order-by-
order) iteration. We explicitly checked that this noise was
not a great problem (of course FFT -acceleration is quite
helpful in reducing the number of iterations needed to fix
the gauge). In the end the advantages of computing in Lan-
dau gauge were not overtaken by the care that is due to
keeping this noise under control.
We now come to a brief description of how we compute

the observables of (1). Trivial algebra (i.e. creating exter-

nal states with quark operators and Wick-contracting to
obtain propagators) leaves us with the task of computing
expectation values (i.e. asymptotic Langevin time aver-
ages) of the quantities

∑
q;στ

M−1αp;σqΓστM
−1
τq;βp (7)

(where M is the Dirac operator; α and β are external
polarizations; σ and τ are other spin indices; p and q
are momentum indices; color degrees of freedom are al-
ways suppressed in the notation). The index p in the in-
verse Dirac operator is singled out by placing a δ-like
source at p in momentum space, with the right polariza-
tion and color index (more details in the following sec-
tion). Notice that in this way not only the inverse is
to be computed on a source (as usual), but one actu-
ally squeezes all the information out of the configuration.
This has the advantage of working directly in momentum
space, which is natural in our framework (every inversion
of M comes as a result of a computation that goes back
and forth from momentum space [6]. The only measure-
ment that is a bit different is that of the conserved vector
current,

V cµ = 1/2
(
ψ(x)(γµ−1)Uµ(x)ψ(x+µ)

+ψ(x+µ)(γµ+1)U
†
µ(x)ψ(x)

)
. (8)

A little algebra shows that also in this case the measure-
ment can be quite efficient by reverting to a convolution
product.
A very important improvement of our statistics comes

from exploiting hypercubic symmetry: all the measure-
ments connected by a hypercubic symmetry transform-
ation are averaged. The fluctuations associated to this
average are taken into account for assessing errors. As
a general rule for the different measurements involved in
our calculations, the bootstrap method was the basic tool
for the computation of the errors.
To conclude this section on our computational method,

we should comment on our treatment of the zero modes.
Any perturbative expansion of LQCD has to face the prob-
lem of regularizing the zero mode contribution to the func-
tional integral, since the free propagator cannot be in-
verted in those points. How this applies to NSPT has
been discussed in [6]. The most common approach is to
remove the degrees of freedom associated with the zero
modes [1, 15]. Although this prescription is not gauge in-
variant, such contributions are expected to vanish in the
infinite-volume limit. We should remark that gauge invari-
ant alternatives to this procedure exist. These involve the
use of twisted boundary conditions [16] or the Schrödinger
functional scheme [5]. While we plan to perform compu-
tations also in those schemes in the future, in the present
work we have only considered the prescription in which
zero modes are removed.We will come back to this issue in
Sect. 6.
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4 Hypercubic symmetric Taylor expansions:
the case of the quark propagator

We now proceed to discuss in detail a prototype compu-
tation, i.e. the one-loop computation of the quark field
renormalization constant. In practice, we are going to de-
scribe how we measure the quark propagator. We will thus
make it clear what we mean by hypercubic symmetric Tay-
lor expansions.
The section is intended as a prototype computation, so

let us pin down the expected general form of the nth loop
coefficient of a RC:

zn = cn+
n∑
i=1

di(γ) log(p̂)
i+F (p̂) , (p̂= pa) . (9)

We have to look for a finite number (cn), a divergent part
that is a function of the anomalous dimensions γ, and irrel-
evant pieces, which we can expect compliant to hypercubic
symmetry, and which are described by a suitable function
F . We take the needed anomalous dimensions from the
literature and we subtract their contribution. In particu-
lar, for a one-loop computation we simply need to subtract
a simple log multiplied by the one-loop anomalous dimen-
sion (in this section we will completely ignore all the con-
tributions coming from finite-size effects, to which we will
come back in Sect. 6). After such a subtraction we need
a convenient way to fit the irrelevant pieces given by F (p̂).
The example at hand is both instructive and simple: in par-
ticular, in Landau gauge the quark field has zero anoma-
lous dimension at one loop, so it is simply required to get
rid of F (p̂) in order to get the constant cn we are interested
in.
We want to compute the two point vertex function (the

inverse of the quark propagator) for a massless fermion. In
the continuum limit we have

Γ2
(
p2
)
= S
(
p2
)−1
.

On the lattice we define the dimensionless quantity p̂= pa
(in general we use the hat notation for dimensionless quan-
tities). Furthermore, we also explicitly write the depen-
dence on the coupling (and since we compute in PT we
write β−1 rather than β):

aΓ2
(
p̂, m̂cr, β

−1
)
= aS

(
p̂, m̂cr, β

−1
)−1

= i �p̂+ m̂W(p̂)− Σ̂
(
p̂, m̂cr, β

−1
)
,

(10)

where m̂W(p̂) = O(p̂2) is the (irrelevant) mass term
generated at tree level by the Wilson prescription,
Σ̂(p̂, m̂cr, β

−1) is the dimensionless self-energy (which is
O(β−1)), and m̂cr = amcr is the critical mass (which is
O(β−1) as well). Since chiral symmetry is broken by the
Wilson regularization, also massless fermions generate
a mass counterterm.
The first step is to compute the self-energy Σ̂ from our

NSPT simulations. To do that, we need the propagator

a S(p̂, m̂cr, β
−1) in momentum space, i.e.

aS
(
p̂, m̂cr, β

−1
)
αη
= 〈M−1αp;ηp〉= T

−1
T∑
t=1

M−1αp;ηp(t) ,

where Mαp;ηq is the full fermionic matrix. We explicitly
write only the spin indices (α and η) and the momentum
coordinates (p and q), while the color indices are left im-
plicit. The symbol 〈〉 stands for the average over the gauge
configurations, and the right hand side makes explicit the
average over the Monte Carlo history of length T . This is
performed as described in [6]. Here we only recall that our
method – based on a discretized stochastic Langevin equa-
tion – also involves an extrapolation on the stochastic time
discretization. We are interested in those elements of the
inverse fermionic matrix that appear in the main diagonal
in momentum space. This is obtained by “sandwiching”
the fermionic matrix in a δ-like source vector in momentum
space: ξ

(α;p)
σ (q) = δασδpq. The order-by-order inversion is

then performed as described in [6].
Once aS(p̂, m̂cr, β

−1) is obtained, we average over all
the components that are connected by hypercubic symme-
try transformations. For each givenmomentum, we numer-
ically (order-by-order) invert the 4× 4 propagators5. Fi-
nally, we obtain the self-energy Σ̂(p̂, m̂cr, β

−1), as in (10).
Now we turn to the analysis of the self-energy that we

have obtained as above. It can be written as

Σ̂
(
p̂, m̂cr, β

−1
)
= Σ̂c

(
p̂, m̂cr, β

−1
)
+ Σ̂V

(
p̂, m̂cr, β

−1
)

+ Σ̂other
(
p̂, m̂cr, β

−1
)
. (11)

Σ̂c is the contribution along the (Dirac) identity opera-
tor. By this we mean that the trace over the spin indices
is (1/4)Trspin(Σ̂) = Σ̂c. Similarly, Σ̂V is the contribution
along the gamma matrices:

1

4

∑
µ

γµTrspin
(
γµΣ̂
)
= Σ̂V .

Finally, Σ̂other includes all contributions along the remain-
ing elements of the Dirac basis. We are not interested in
such (irrelevant) terms, which are easily projected out.
Therefore, we will forget about Σ̂other in the following.
Σ̂c contains the contribution to the critical mass; in fact

Σ̂
(
0, m̂cr, β

−1
)
= Σ̂c

(
0, m̂cr, β

−1
)
= m̂cr = amcr . (12)

By restoring physical dimensions one can inspect the a−1

divergence of the critical mass: a−1Σ̂c(0, m̂cr, β
−1) =mcr.

We will come back to it in the following section. For the mo-
ment, we concentrate on Σ̂V , which we need to extract the
quark field RC. If we make a Taylor expansion in powers of
a, its most general form up to order O(a4) is

Σ̂V = i
∑
µ

γµp̂µ

(
Σ̂
(0)
V

(
p̂, m̂cr, β

−1
)
+ p̂2µΣ̂

(1)
V

(
p̂, m̂cr, β

−1
)

+p̂4µΣ̂
(2)
V

(
p̂, m̂cr, β

−1
)
+ . . .

)
, (13)

5 Here, we use the fact that the propagator is color diagonal
at any order in perturbation theory.
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Fig. 1. The continuum-limit extrapolation of

Z
(1)
q (first loop of the quark field renormaliza-
tion constant). We are interested in the inter-
cept at (pa)2 = 0, reached on the lowest line,

which is the contribution Σ̂
(0)
V (p̂, m̂cr, β

−1)
in (13). The (blue, violet , azure-blue, green)
curves represent the functions σ(k, p̂) of (15)

for k = 1, 2, 3, 4. The red curve is Σ̂(0), which
is only meant to guide the eye to the inter-
cept at (pa)2 = 0. The displayed fit includes
up to O(a6) terms. Stability has been checked
with respect to various numbers of terms and
intervals

where the dots stand for higher terms in a. The functions
Σ̂
(i)
V (.) (with i= 0, . . . ), in turn, are the most general com-
binations of hypercubic invariant polynomials that con-
tribute to the given order. In particular, the first term can
be written as

Σ̂
(0)
V

(
p̂, m̂cr, β

−1
)
= α

(0)
1 1+α

(0)
2

∑
ν

p̂2ν +α
(0)
3

∑
ν

p̂4ν

+α
(0)
4

∑
ν �=ρ

p̂2ν p̂
2
ρ+O(a

6) . (14)

For higher i > 0, there are of course less terms relevant for
a given order. In general, all the possible covariant polyno-
mials can be found through a character’s projection of the
polynomial representation of the hypercubic group onto
the defining (four dimensional) representation of the same
group (for a general reference, see, for instance, [17]).
To gain insight into (13), remember that in the free case

the Σ̂
(i)
V correspond to the coefficient of p̂

(i+1)
µ in the Tay-

lor expansion of 2 sin(
p̂µ
2 ). Equation (13) is what we call a

hypercubic invariant Taylor expansion. The term in which
we are interested is the leading term α

(0)
1 in Σ̂

(0)
V , since the

other ones vanish in the continuum limit. In fact, the quark
field RC Zq is defined as (see (5); in the following we as-
sume the color average has already been taken):

Zq(µa) =
Trspin

(∑
ν γνpνΣ̂V

(
p̂, m̂cr, β

−1
))

4ip2

∣∣∣∣∣∣
p2=µ2

.

In order to explain in detail our fit procedure, let us de-
fine the auxiliary quantities

σ(k, p̂) =
1

M

∑
µ:p̂µ=

2aπ
L k

Trspin
(
γµΣ̂V

(
p̂, m̂cr, β

−1
))

p̂µ

(15)

(L=Na is the linear size of the lattice). For a given mo-
mentum an average is taken over all the M directions µ
such that p̂µ =

2aπ
L
k. For instance, consider the momentum

q̂ = (1, 1, 3, 2)2π/N . In this case σ(1, q̂) has two contribu-
tions (M = 2): one from γ1 and one from γ2. Since also
the σ(k, .) are hypercubic invariant, they can be averaged
accordingly. Referring to the example above, consider t̂ =
(3, 2, 1, 1)2π/N ; symmetry requires that σ(1, q̂) = σ(1, t̂).
In practice, they are averaged. Notice that the functions
σ(k, .) are specific linear combinations of the Σ̂

(i)
V . In prac-

tice, we fit the data against the functions σ(k, .). This is
nothing but a fit of the constants entering the parametriza-
tion of Σ̂

(i)
V in (13). If we include O(a

4) terms (as in (13)),
we have to fit seven unknown constants. To orderO(a6) we
have 14 of these. We tried different orders up to O(a6) and
checked the stability of the result. The interesting term is
the leading one. Other coefficients have to do with irrele-
vant effects.
A nice illustration of the control that we have over

our fits is provided by Fig. 1. There, we plot the functions
σ(k, p̂) up to k= 4, along with the curve Σ̂(0)(p̂, m̂cr, β

−1)),
whose intercept in p̂2 = 0 is the parameter we are look-
ing for. In Fig. 1 we choose to plot data versus p̂2, but
one should keep in mind that this is not the only invari-
ant under the hypercubic group entering Σ̂

(i)
V (p̂, m̂cr, β

−1).
Our numerical result reproduces very well the analytical
one.

5 Results

In the previous section we saw an example with no anoma-
lous dimension. This is of course also the case for finite RC
(ZV and ZA) or finite ratios (ZP /ZS and ZV /ZA). In the
following we present our results for these quantities. We
computed at every order the relevant expectations values
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dictated by (1). Finally, we performed the amputation and
the projection on the tree-level structure. We could thus
get the order-by-order expansions of theOΓ (pa) in terms of
which RC are defined. The one-loop analytical results are
well reproduced [18].
In the last subsection our results for the critical mass

are presented.

5.1 The finite ratios ZP/ZS and ZV /ZA

The ratios ZP /ZS and ZV /ZA are safely computable at
every order. This simply means to take (again, order-by-
order) ratios of OΓ (pa) quantities. The quark field renor-
malization constant present in (4) drops out in the ratios,
together with the divergence that affects ZP and ZS sepa-
rately. In the end, one is left with the same situation we saw
in the previous section: we simply have to perform at every
order hypercubic invariant Taylor expansions to get the
continuum limit coefficients of the expansions. One-loop
examples are presented in Fig. 2. Fitting a scalar quantity
like ZP /ZS is actually easier (there is no direction singled
out and consequently only one function, to be fitted as
a polynomial in the hypercubic invariants).
We could perform many checks on our results. Finite-

size effects are well under control, as checked by compar-
ing results on 164 and 324 lattices in the quenched case.
In the next section we will elaborate on computations for
which this is not the case. We also stress that we can
compute both ZA/ZV and ZV /ZA; in the same way, we
can compute both ZP /ZS and ZS/ZP . Due to the order-
by-order nature of the computation, this is not a tautol-
ogy: different ratios come from different (although corre-
lated) combinations of data. We checked that to a very
good precision the series obtained are inverses of each
other.
Table 1 collects our results for different numbers of fla-

vors. In the case nf = 2 four-loop results are available.
As already pointed out, the fact that we were able to

Fig. 2. Computation to one loop of finite ratios of the renormalization constants: ZP /ZS (left) and ZA/ZV (right). Data points
taken into account in these particular fits are enclosed in circles (left) or joined by solid lines (right ; see caption of Fig. 1)

Table 1. The ratios ZP /ZS and ZV /ZA for various numbers of
flavor nf . Four-loop results are only available for nf = 2

ZP /ZS

nf O(β−1) O(β−2) O(β−3) O(β−4)

0 −0.487(1) −1.50(1) −5.72(3) n.a.
2 −0.487(1) −1.46(1) −5.35(3) −21.6(3)
3 −0.487(1) −1.43(1) −5.13(3) n.a.
4 −0.487(1) −1.40(1) −4.86(3) n.a.

ZV /ZA

nf O(β−1) O(β−2) O(β−3) O(β−4)

0 −0.244(1) −0.780(5) −3.02(2) n.a.
2 −0.244(1) −0.759(5) −2.83(2) −11.5(2)
3 −0.244(1) −0.744(6) −2.72(2) n.a.
4 −0.244(1) −0.732(6) −2.57(2) n.a.

go one loop higher is due to our better knowledge of
the three-loop critical mass in the nf = 2 case. Statis-
tics in the cases nf = 3, 4 is actually poorer. The fact
that we could anyway go to three loops is a numerical
accident: the signals for these ratios are actually very
clean.
Having results for various numbers of flavors one can

proceed to fit the nf dependence. Since the polynomial de-
pendence on nf of every order is fixed, this is another test
for our results (see Fig. 3). We got

(ZP /ZS)
(2) =−1.50(1)+0.0249(2)nf

(ZP /ZS)
(3) =−5.72(3)+0.151(5)nf+0.0159(5)n

2
f

(ZV /ZA)
(2) =−0.780(5)+0.0121(1)nf

(ZV /ZA)
(3) =−3.02(2)+0.073(2)nf+0.098(3)n

2
f .

Presented in this (more universal) way the precision of
our results appears to be a bit poorer. As expected, results
are dominated by quenched contributions.
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Fig. 3. The nf dependence of the ratio ZV /ZA at two (left , linear fit) and three (right , quadratic fit) loops

Fig. 4. Computation to one loop of finite renormalization constants: ZV (left) and ZA (right). Same notation as in Fig. 2

5.2 ZV and ZA

One-loop examples of computations ofZV andZA are plot-
ted in Fig. 4. ZV and ZA are finite quantities by them-
selves. In our master formula (4) they are interlaced with
logs coming from the quark field renormalization constant.
The latter can be eliminated in two different ways. A first
strategy is to cancel Zq directly from the measurements of
the propagator. Another possibility is to take ratios with
the conserved vector current: this is just what we did in
the case of ZP /ZS and ZV /ZA, this time having one of the
Z equal to one. Both procedures return consistent results,
which are summarized in Table 2, where we present results
for nf = 0, 2 (also in this case, four-loop results are avail-
able for nf = 2).
We have just discussed the two different approaches we

used to compute ZV and ZA. In the previous subsection we
presented results for the ratio ZV /ZA, which can of course
as well be computed from the computation of ZV and ZA.
One can verify that all these measurements are very well

Table 2. The finite renormalization constants ZV and ZA for
nf = 0, 2

ZV

nf O(β−1) O(β−2) O(β−3) O(β−4)
0 −1.044(2) −1.98(3) −6.10(8) n.a.
2 −1.044(2) −1.88(3) −5.42(8) −17.0(9)

ZA

nf O(β−1) O(β−2) O(β−3) O(β−4)
0 −0.800(2) −1.39(3) −4.04(4) n.a.
2 −0.800(2) −1.31(3) −3.50(8) −9.8(6)

consistent. Still, they are controlled by different numeri-
cal noise, so that (for example) a direct computation of
the ratio ZV /ZA is viable for all the nf we took into ac-
count, while this is not the case for ZV and ZA separately
(as already stated, statistics for nf = 3, 4 is poorer). In the
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Table 3. Three-loop critical mass for various nf ; a four-loop
result is available for nf = 2

mcr nf = 0 nf = 2 nf = 3 nf = 4

O(β−3) −13.11(6) −11.78(5) −11.02(9) −10.24(9)
O(β−4) n.a −39.6(4) n.a n.a

end, all these procedures differ from each other for different
ways of fitting irrelevant contributions. Getting rid of ir-
relevant contributions to single out continuum limit results
is a key issue in our approach, and so consistency between
all these computations is a good test for reliability of our
results.

5.3 A by-product: the critical mass

Analytical computations of the critical mass are available
up to two loops [12, 13]. A three-loop computation in the
nf = 2 case was reported by our group in [6]. Here we
present three-loops result for other nf and add a four-
loop result for nf = 2. The results are collected in Table 3.
They were obtained from the defining formula of (12) by
fitting irrelevant contributions to Σ̂c(p̂, m̂cr, β

−1). Also in
this case there was no log coming from an anomalous di-
mension: in this case there is a power divergence, because
of which a perturbative result is not to be taken as an ac-
curate one. It is nevertheless valuable indeed to keep our
fermions massless, i.e. as a counterterm.
Also in this case, one can fit a generic nf result:

m(3)cr =−13.11(6)+0.62(5)nf+0.024(9)n
2
f .

6 Dealing with anomalous dimensions

We anticipated that dealing with anomalous dimensions
requires some extra care. In order to get some insight, we
discuss a first example in which an anomalous dimension
comes into place, i.e. the one-loop computation of ZS . In
this case our master formula (4) reads

(
1−
z
(1)
q

β
+ . . .

)(
1+
z
(1)
s −γ

(1)
s log(p̂2)

β
+ . . .

)

×

(
1+
O
(1)
s (p̂2)

β
+ . . .

)∣∣∣∣∣
p2=µ2

= 1 , (16)

in which we explicitly wrote both the constant and the
logarithmic contributions to the renormalization constants
(the only log comes in this case from ZS , since the one-loop
quark field anomalous dimension is zero in Landau gauge).

O
(1)
s (p̂2) is what is actually numerically measured. At one-
loop order we can solve the previous relation:

z(1)q − z
(1)
s = O

(1)
s (p̂

2)−γ(1)s log(p̂
2) . (17)

The message from (17) is simple: we will first subtract the
logarithmic contribution and then proceed to our hypercu-
bic invariant Taylor expansion. This is plotted in Fig. 5: up-
per data points areO

(1)
s (p̂2), lower data points are the sub-

tracted ones. We can see on the left of Fig. 5 that by going
through this procedure we miss the analytical result. No-
tice that it looks like we were subtracting too much. To be
definite, the subtracted data points bend quite a lot in the
IR region. In the end, this does not come as a surprise: RI’-
MOM is an infinite-volume scheme, but we are necessarily
dealing with finite N (number of lattice points) computa-
tions. Since fornf = 0wehaveboth 32

4 and 164 data, we are
in a position to verify whether this is the real issue.
Figure 6 displays our results forO

(1)
p (p̂2) (the equivalent

of (17) for the pseudoscalar current), O
(1)
s (p̂2) and of the

ratio O
(1)
s (p̂

2)

O
(1)
p (p̂2)

on the two different volumes. While the ratio

(in the middle of the figure) is safe (we have already made
this point in the previous section), quite remarkable finite-

size effects are manifest for the O
(1)
i (p̂

2). It is obvious that
byperforming the subtraction of (17) on the 164 data points
onemisses the analytical result evenmore than in the left of
Fig. 5. The picture stays much the same at higher loops.
It is in order to mention an important caveat. We have

already made the point that our regularization of zero
modes prescribes the removal of the degrees of freedom
associated to them. This is a legitimate procedure in the
N →∞ limit, which in turn means that we can have bet-
ter and better approximations of infinite-volume results,
but we cannot aim at having consistent perturbative ex-
pansions at a finite physical volume. Our aim is to single
out the N =∞ behavior, but this requires one to confront
finite-N corrections, which we expect to be sizable in par-
ticular in the IR region.
One can define L=Na. Let us now write down for the

quantity at hand the momentum sum I(p, a, L) encoding
the lattice Feynman diagram of the conventional Lattice
perturbation theory, with the same ad hoc regularization
of zero modes (zero momentum removed from the sum).
Dimensional analysis suggests the presence of pL= p̂N ef-
fects (this relation holds for every value of a). In the spirit
of the famous work [19] one can now split a (logarithmically
divergent) Feynman diagram as in

I(p, a, L) = I(0, a, L)+ (I(p, a, L)− I(0, a, L))

≡ I(0, a, L)+J(p, a, L) . (18)

We can now manipulate the momentum sums. The diver-
gence is logarithmic, so by subtracting I(0, a, L) we make
J(p, a, L) UV finite. Therefore, it can be computed (with
the same ad hoc regularization of zero modes) in the a→ 0
limit. Although this does not define a finite-volume pertur-
bative computation, it is a legitimate manipulation of the
sum. In general, it will now be IR divergent, but this di-
vergence (which is anyway regularized by finite L) will be
canceled by contributions coming from I(0, a, L), i.e.

I(0, a, L) = c1+γ log(a/L)+H(a/L)

J(p, a, L) = c2+γ log(pL)+G(pa, a/L, pL) . (19)
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Fig. 5. Computation of one-loop renormalization constant for the scalar current. With respect to (17), upper points are the un-

subtracted O
(1)
s (p̂

2), while lower (circled crosses) stand for the subtracted O
(1)
s (p̂

2)−γ
(1)
s log(p̂

2). An analytic result is marked
with a darker symbol . On the left : no correction for finite volume. On the right : finite-volume tamed-log taken into account

Fig. 6. Computations of O
(1)
p (p̂

2) (the equivalent
of (17) for the pseudoscalar current) (top) and

O
(1)
s (p̂

2) (bottom) on 324 (circles) and 164 (dia-

monds). In the middle is the ratio
O(1)s (p̂

2)

O
(1)
p (p̂2)

, which

appears safe with respect to finite-size effects

We point out that I(0, a, L) cannot contain pL effects:
these should be looked for in J(p, a, L). Therefore, one
can look for pL= p̂N effects in G(pa, a/L, pL)→ G̃(pL).
In order to obtain this quantity, we just computed the
relevant graph in the formal continuum limit of our sum
J(p, a, L) (a→ 0 with L=Na fixed), with the same ad hoc
regularization of the zero modes. We call this contribution
tamed-log, since it is supposed to resemble the expected
log, but with pL= p̂N effects on top of it. We find that
this function indeed approaches a log for p� 1. Figure 5
displays our results once one subtracts this tamed-log. As
a matter of fact, if one stays away from deep IR the sub-
tracted data points on the left and on the right of Fig. 5
are much the same. We stress that we are not saying that
the finite-N effects we have just elaborated on are the only

ones. By inspection, they appear to be the relevant ones,
as it is confirmed by the fact that N = 32 and N = 16 now
return the same results.
The situation is more complex at higher loops. We will

devote to it a separate paper [9], in which we will explicitly
gain information from different lattice sizes.

7 Resumming the series

We now go back to the expansions of Sect. 5.1 and Sect. 5.2
and try to resum them to obtain the finite RCs. Giving re-
sults and errors on top of them requires the estimates of the
truncation errors. We will in the following adopt the strat-
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egy of BPT. We stress from the very beginning that our
real goal is to estimate the convergence properties of the se-
ries. It is only because of the sufficiently high order of the
expansions that one can hope to really gain insight. One
should nevertheless be ready to accept that every state-
ment on convergence will be decided on by a strict case-by-
case policy.
The different coupling constants we will use are all ob-

tained in terms of the basic plaquette P . Let us define

x0 = β
−1 , x1 ≡

β−1
√
P
, x2 ≡−

1

2
log(P ) , x3 ≡

β−1

P
.

(20)

x2 and x3 are quite popular as boosted couplings. The
reason why we also define x1 will be clear in a moment.
Obtaining the expansions in xi once the expansions in x0

Fig. 7. Resummations of ZP /ZS (left) and ZS/ZP (right) for nf = 2 at β = 5.8 to one (circles), two (squares), three (diamonds)
and four (triangles) loops (the last is the only one that has a sizable error). We show resummations for different couplings: on the
x-axis, the (different) values of the different couplings. From the left: x0, x1, x2, x3 (x0 is β

−1; see text for the definitions of the
other couplings)

Fig. 8. The scaling of deviations of different
order truncations for the quantity ZP /ZS for
the x2 coupling

are known is a textbook exercise, given the definitions in
(20). One needs the expansion of the plaquette: analytical
results [20] are only known to a given order, but our simu-
lations always provide also the expansion of P .
We resum the series at β = 5.8, nf = 2. This makes pos-

sible a comparison with the non-perturbative results of [8].
Figure 7 displays the resummation of ZP /ZS and

ZS/ZP in the four different couplings. One can inspect
from the very beginning the impact of a basic property of
BPT that is often underestimated: all the couplings are
equal at tree level, which means that all the expansions are
equal at leading order. One-loop BPT amounts to sitting
on a straight line, whose slope is dictated by the one-loop
coefficient. Only at higher loops we can gain some insight
on the convergence properties. There is actually a var-
iety of convergence patterns (taking also x1 into account is
helpful in this respect).
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Fig. 9. Resummations of ZP /ZS (left) for
nf = 2 at β = 5.8. The same as in Fig. 7, but
this time exaggerating the boosting of the
couplings

Fig. 10. Resummations of ZA (left) and ZV (right) for nf = 2 at β = 5.8 to one (circles), two (squares), three (diamonds) and
four (triangles) loops (the last is the only one that has a sizable error). We show resummations for different couplings: on the x-
axis, the (different) values of the different couplings. From the left: x0, x2, x3 (see text for the definitions of the couplings)

In particular, one can check the following.

– Within a fixed definition of the coupling, convergence
is of course better and better as the order increases.
As common wisdom suggests, convergence in the bare
coupling is not so brilliant, and in general quite differ-
ent convergence patterns are manifest; they appear to
be quite satisfactory for x2 and x3. In particular, for the
case of the x2 expansion we plot in Fig. 8 the deviations
∆(n), defined as the differences between resummation
at order n and resummation at order n−1 . The good
scaling should not be taken too seriously (this is largely
a numerical accident). Still, this signals a reasonable
convergence pattern.

– As the order increases, expansions in different cou-
plings get closer to each other, as expected; in par-
ticular expansions in x2 and x3 are quite close to each
other.
– The resummed results for ZP /ZS and ZS/ZP in the
x2 and x3 couplings are the inverses of each other to
a reasonable accuracy. This is also a good indication.

Convergence properties of the expansions in the x2 and
x3 couplings are good enough to extract a result. We no-
tice that if one adds to the result at a given order the
deviation from the immediately lower order, one always
ends up at the same result (as a matter of fact a popular
way to pin down a truncation error is just taken from the
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deviations that we previously called ∆n). We thus quote
ZP /ZS = 0.77(1).
We have already made the point that to assess the con-

vergence properties one should adopt a case-by-case strat-
egy. This can be clearly seen when we proceed to resum
ZA and ZV . Before doing that, we give a trivial example
of what a blind application of the idea of BPT can result
in. In Fig. 9 we exaggerate the boosting of the coupling, by

taking into account the other coupling xα ≡
β−1

Pα
(α > 1).

As one can see, the convergence properties are completely
jeopardized.
In Fig. 10 we plot the resummation of ZV and ZA

(again, at β = 5.8, nf = 2). As one can see, this time the
convergence properties of the expansion in the bare coup-
ling are not so bad. Consequently, one is already at risk
of overshooting at one-loop BPT, and the expansions in
x2 and x3 would then oscillate. Our final estimates are
ZA = 0.79(1) and ZV = 0.70(1).
Our resummed results are quite consistent with [8].

A greater deviation is seen on the values of ZA and ZV .
To our understanding this could be mainly imputed to the
indetermination coming from the chiral extrapolation.

8 Conclusions

We presented a high order computation of renormaliza-
tion constants for lattice QCD. Finite-size effects are well
under control for the quantities we considered. There is
no extrapolation involved in staying at the chiral limit in
which renormalization conditions are imposed. The con-
tinuum limit extraction is achieved in a clean way. Trunca-
tion errors can be well assessed by a judicious use of BPT.
Thus, the main message of this paper is that high precision
perturbative computations of lattice QCD renormalization
constants are feasible and should not necessarily be re-
garded as a second choice.
Further work will follow, both to complete the job for

logarithmically divergent quantities and to take into ac-
count different actions (in particular different fermionic
regularizations). This is not expected to imply any change
in strategy, and the implementation is mainly a matter of
programming. In particular, work has already started to
extend the results to Clover fermions and to other gauge
actions.
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